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Multiscaling in passive scalar advection as stochastic shape dynamics
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The Kraichnan rapid advection model@Phys. Fluids11, 945 ~1968!; Phys Rev. Lett.72, 1016 ~1994!# is
recast as the stochastic dynamics of tracer trajectories. This framework replaces the random fields with a small
set of stochastic ordinary differential equations. Multiscaling of correlation functions arises naturally as a
consequence of the geometry described by the evolution ofN trajectories. Scaling exponents and scaling
structures are interpreted as excited states of the evolution operator. The trajectories become nearly determin-
istic in high dimensions allowing for perturbation theory in this limit. We calculate perturbatively the anoma-
lous exponent of the third- and fourth-order correlation functions. The fourth-order result agrees with previous
calculations.@S1063-651X~98!06105-4#

PACS number~s!: 47.27.Gs, 47.11.1j
re
l-

hi
m
nt

h
g
e
ng
an

th
la
tia
-
th

Th
p
ti
h
e

t
flo
a

W
e
to
w
o
e
la

er

eo
e

e
the
dy-

on
of a
-

e
ive
me.
ri-
e-
rge
We
to

nc-
se

s-
can
ec.
-

lous
era-
a-
rge
clu-

-

op-
e

I. INTRODUCTION

Although most researchers in the field of turbulence ag
that the structure functions of the velocity field exhibit mu
tiscaling, there is no well-understood mechanism for t
phenomenon that would allow, even in principle, a syste
atic calculation of the values of the multiscaling expone
@1#. The Kraichnan rapid advection model@2# is a simplified
model for turbulent advection of a passive scalar in whic
mechanism for multiscaling has been identified. Althou
the relevance of this mechanism to multiscaling in fully d
veloped turbulence in still unclear, the study of multiscali
in Kraichnan’s model presents an alternative approach
therefore has attracted much interest recently@3–6#.

One of the main advances in studying this model was
identification of anomalous scaling contributions to corre
tion functions that are zero modes of certain linear par
differential operators@5#. Although this identification has al
lowed for the development of perturbation theories for
computation of the anomalous exponents, the meaning
these structures is, in our view, still somewhat obscure.
purpose of this paper is to reinterpret the anomalous ex
nents as eigenvalues of an evolution operator for the rela
shape of trajectories of particles advected by the flow. T
zero modes arise naturally as the adjoints of the set of eig
functions of this evolution.

Our method is to consider the evolution ofN particles
with the flow. TheseN particles define a configuration tha
has an overall scale and a normalized shape. Under the
dynamics, the overall scale tends to increase while the sh
will asymptotically be described by a stationary measure.
consider the rate at which a distribution of initial shap
tends towards its stationary distribution. It is important
consider this rate in terms of the overall scale. Doing this,
find the decay rate towards the stationary state to be a c
bination of power laws in this scale. We identify these pow
laws with the anomalous exponents of the passive sca
Thus we view the anomalous scaling as a dynamic prop
of the evolution of trajectories@7#.

This point of view treats the anomalous scaling as a g
metric property of the trajectories of fluid particles in th
571063-651X/98/57~5!/5511~9!/$15.00
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flow, without explicit reference to the forcing. In fact, on
does not need to define a passive scalar field since all
properties we are interested in are included in the shape
namics. Note that this explains why the two-point correlati
functions do not have anomalous scaling: The geometry
two-point configuration is trivial since it is completely de
scribed by the distance between the points.

We will show that this picture formally contains all th
ingredients of anomalous scaling in the dynamics of pass
scalars. Furthermore, it is useful as a calculational sche
We will demonstrate this by presenting an alternative de
vation for perturbation theory in large dimensions. We b
lieve that the physics of passive scalar advection in la
dimensions becomes more transparent in this framework.
calculate the previously unknown perturbative correction
the anomalous exponent of the third-order correlation fu
tion and recover the known result for the fourth-order ca
@5#.

In Sec. II we present the path-integral formalism of pa
sive scalar advection and show how correlation functions
be written as averages over Lagrangian trajectories. In S
III we exploit this picture to identify a mechanism for gen
eration of anomalous scaling and show how the anoma
exponents are related to eigenvalues of an evolution op
tor. In Sec. IV we apply this picture to calculate perturb
tively the first correction to the anomalous exponents in la
dimensions. Section V is devoted to a summary and con
sions.

II. LAGRANGIAN PATH FORMULATION OF PASSIVE
SCALAR ADVECTION

The dynamics of a passive scalaru advected by an incom
pressible velocity fieldu are described by

] tu~r ,t !5k¹2u~r ,t !2u•“u~r ,t !1 f ~r ,t !, ~1!

wherek is the molecular diffusivity andf models the injec-
tion and extraction of a scalar by external sources. The pr
erties ofu and f are given presumably as the result of som
physical process.
5511 © 1998 The American Physical Society
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5512 57OMRI GAT AND REUVEN ZEITAK
In the rapid advection model@2# the velocity field is taken
to be a random Gaussian field,d correlated in time and with
self-similar correlations in space:

^@u~r ,t !2u~r 8,t !# ^ @u~r ,t8!2u~r 8,t8!#&

5h~r2r 8!d~ t2t8!, ~2!

where the ‘‘eddy-diffusivity’’ tensorh is defined by

h~r !5S r

l
D jS 12

j

d211j

r ^ r

r 2 D , ~3!

where the coefficients are chosen such that“•h50. The
forcing f is also taken to be white in time, Gaussian, and
characterized by a single large scaleL,

^ f ~r ,t ! f ~r 8,t8!&5J~r2r 8!d~ t2t8!, ~4!

where the functionJ(r ) is nearly constant forr !L and
decays rapidly forr .L.

The rapid advection model is theoretically attractive d
to the fact that the equations for the correlation functions
linear partial differential equations as opposed to the hie
chy of nonlinear integro-differential equations for fully d
veloped turbulence. Some theoretical progress has b
made in the case of the rapid advection model and it is p
dicted that the 2nth-order correlation function behaves as

F2n~r1 , . . . ,r2n!

5Ln~22j!
„c01•••1ck~r /L !z2nF̂2n~ r̂ !1¯…, ~5!

where r !L is a typical distance between points andr̂ de-
notes a set of dimensionless variables describing the con
ration of the 2n points. According to the existing theory, th
terms in the expansion~5! are of two types: Either they ar
inhomogeneous terms, whose scaling is determined by
mensional analysis, or they are the homogeneous solution
moment equations, whose scaling exponents are not
strained by dimensional arguments. The exponents and
ing functions are expected to be universal, but not thec
coefficients, which depend on the details of forcing.

The exponentz2n that dominates when considering stru
ture functions

S2n~r1 ,r2!5^@u~r1 ,t !2u~r2 ,t !#2n& ~6!

is the scaling of the leading term in Eq.~5! that depends
nontrivially on all of the 2n variables. Anomalous scalin
occurs when this term is due to homogeneous solutions.

As the path-integral formalism for Eq.~1! is well docu-
mented@8#, we will not detail it here. The main conclusion
that one may write its solution formally

u~r ,t !5E
2`

t

dt8^ f „r 8~ t8!,t8…&h , ~7!

with the trajectoryr 8 obeying

r 8~ t !5r , ~8!

] t8r 8~ t8!5u„r 8~ t8!,t8…1A2kh~ t8! ~9!
s
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andh is a vector of zero-mean-independent Gaussian w
random variables.

The physical meaning of this equation in simply unde
stood if we consider thek50 case: The trajectoriesy are
simply the characteristics of the partial differential equati
~PDE! ~1!, namely, the Lagrangian trajectories of the flo
field u. If we want to know how much scalar is at point (r ,t)
we need to see what the value ofu was where this point
came from and add the accumulating forcing along the p
traced backward in time@9#. Whenk is positive the trajec-
tories are randomly perturbed Lagrangian trajectories and
scalaru is obtained as an average overh. This procedure
generates the diffusion term in Eq.~1!.

Using the path-integral formalism, we want to compu
correlation functions of the type

Fn~r1 , . . . ,rn!5^u~r1!•••u~rn!&u, f , ~10!

where^A&u, f denotes an average over realizations of veloc
and forcing. Substituting each factor ofu(r i) by its represen-
tation ~7!, we can perform thef averages explicitly, yielding

F2n~r1 , . . . ,r2n ,t !

5K E
2`

t

dt1•••dtn@J„r18~ t1!2r28~ t1!…¯

3J„r2n218 ~ tn!2r2n8 ~ tn!…1 permutations#L
u,h

, ~11!

while the odd moments vanish. Each of the trajectoriesr i8
obeys an equation of the form~9!, whereu as well ash is a
stochastic variable, whose correlation function is given
Eq. ~3!. The procedure just described is a Langevin dynam
of N particles, with correlated noise. Incompressibility ofu
implies that Eq.~9! should be interpreted in the Ito sens
The corresponding Fokker-Planck equation with respec
both h and u is precisely the well-known homogeneou
Kraichnan PDE for the 2nth moment@10#.

The representation ofF2n given in Eq.~11! can be turned
into a recursive expression by ordering thet1 , . . . ,tn inte-
grations such thatt1.t2.•••.tn . Since Eq.~11! contains
all permutations inr k8 , this ordering can be done withou
changing the results. The timest2 , . . . ,tn can be integrated
out to give

F2n~r1 , . . . ,r2n ,t !

5K E
2`

t

dt1@J„r18~ t1!2r28~ t1!…

3F2n22„r38~ t1!, . . . ,r2n8 ~ t1!…1 permutations#L
u,h

.

~12!

This form for F2n is useful because it contains only a sing
time integration, so that one needs to follow a joint trajecto
of 2n particles at the same time and integrate along t
trajectory the forcing defined by the terms in the squ
brackets in Eq.~12!.



it’’

e

n

e
ud
ian
th
o
a

ou
te
t
e
o

pa
rn

a
n

c-
ia

ic
th

a

th
a
on
ed

c-
lin
io
il

re
es

is
th
on
t
nd

e
c

ho-

e

ale

w

ion

es

-

-

e
l

rst

cu-

57 5513MULTISCALING IN PASSIVE SCALAR ADVECTION AS . . .
We intend to study the small-k limit of the problem. If a
given trajectory realization does not contain a ‘‘near h
among the trajectories, we expect that thek50 trajectories
are in some sense near the small-k trajectories. The only cas
wherek50 differs radically from the small-k limit is when
two ~or more! trajectories become closer thanO(k1/(22j)).
As we are interested only in separated correlation functio
we neglect the corrections to thek50 limit in what follows.

All the existing studies of the Kraichnan model are bas
on analyzing the Kraichnan linear PDEs. Most of these st
ies identify the anomalous contributions as scale-invar
functions of the coordinates that are annihilated by
Kraichnan operator; thus they were termed zero modes. M
researchers accept the picture that correlation functions
obtained as a sum of zero modes with different anomal
scaling exponents and a contribution that is directly rela
to the forcing that is not anomalous. A notable exception
this approach is the Kraichnan closure, based on an app
ing but unproven conjecture on conditional expectations
diffusive moments@3#.

The common feature for these approaches is that the
sive scalar is treated as a field. Here we propose an alte
tive viewpoint based on Eq.~11!, in which all the properties
of low-order moments are extracted by looking at a sm
number of correlated stochastic trajectories. The represe
tion ~11! expressesF2n as the expectation value of the for
ing correlation function accumulated over the Lagrang
trajectories. Since the forcing drops off sharply beyondL
these objects measure the correlation of the times for wh
the trajectory positions are composed of pairs of points
are within distanceL. In particular, the two point momentF2
is the average time during which two trajectories that end
given distance of each other stay within distanceL. Exclud-
ing the cased52,j50, the trajectories will leave the vicinity
of each other with probability 1 and the integrals in Eq.~11!
converge for each realization. It should be noted that
representation described above can be used in principle
numerical scheme for computing directly the correlati
functionsF2n using a Monte Carlo method without the ne
to generate the whole velocity field@11,12#.

In what follows we show how one can eliminate the for
ing and the outer scale from the problem. Anomalous sca
arises from a relaxation process, in which the configurat
tends towards an asymptotic stationary distribution, wh
the overall scale increases. The outer scale serves as a
ence point for this process, but is not intrinsic to the proc
itself.

III. SHAPE EVOLUTION OPERATOR AND ITS
RELATION TO MULTISCALING

A component of the evolution of an initial configuration
a rescaling of all the coordinates that all increase on
average liket1/z2; this rescaling is analogous to Richards
diffusion for the present case@1#. The dynamic exponen
z2522j is also the characteristic exponent of the seco
order structure function@2#. After factoring this overall ex-
pansion we are left with a normalized ‘‘shape.’’ It is th
evolution of this shape that determines the anomalous s
ing.

Consider an initial shapeZ0 with an overall scales0, that
s,
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is, the configuration coordinates areX05s0Z0. Note that the
shape coordinates are constrained. The overall scale is a
mogeneous function of degree one of the coordinatess0
5S(X0), but its exact functional form is to a large degre
arbitrary.

The shape evolves in time. We fix a scales.s0 and ex-
amine the shape when the configuration reaches the scs
for the first time~we know that this occurs in finite time with
probability one!. Since the trajectories are random the ne
shapeZ is taken from a distributiong(Z0 ,Z,s/s0). We used
scale invariance to deduce that the distribution is a funct
of s/s0.

For a shape picked from an initial distribution of shap
rs0

(Z0) with scales0, the final shape distribution at scales is

rs~Z!5E dZ0r0~Z0!gS Z0 ,Z,
s

s0
D . ~13!

For very large values ofs/s0 we expect the final shape dis
tribution to approach an asymptotic distributionb0(Z). This
distribution is invariant under the transformation~13! and is
an eigenfunction ofg with eigenvalue 1. In general, we ex
pect a spectrum of eigenfunctionsbn for g with eigenvalues
an(s/s0). By successive applications ofg it follows that
an(s/s0)5(s/s0)2ln. Furthermore, we assume that th
eigenfunctionsbn(Z) form a complete set. Thus any initia
distribution of shapesrs0

(Z) can be written as

rs0
~Z!5(

n
Anbn~Z!. ~14!

This distribution evolves into

rs~Z!5(
m

AmS s

s0
D 2lm

bm~Z!. ~15!

Consider an average of a correlation functionFn(X) over
rs0

,

^Fnus0&5E dZ Fn~sZ!rs0
~Z!. ~16!

We now use the representation~12! for Fn(s0 ,Z0). We split
the integration along the Lagrangian trajectory at the fi
point where the overall scale reaches the values. It follows
from the shape evolution equation~13! that we can write

Fn~s0 ,Z0!5I ~s0 ,s,Z0!1E dZ gS Z0 ,Z,
s

s0
DFn~s,Z!.

~17!

I is the average of the contribution a specific forcing ac
mulated along the path froms0 to s. The forcing is that of
Eq. ~12!, so that fors small enough itsL dependence is only
throughFn22. Averaging Eq.~17! with rs0

(Z0) gives
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E dZ@rs0
~Z!Fn~s0Z!2rs~Z!Fn~sZ!#

5^I ~s0 ,s!&5(
m

AmF F̄n
~m!~s0!2S s

s0
D lm

F̄n
~m!~s!G ,

~18!

where

F̄n
~m!~s!5E bm~Z!Fn~sZ!dZ ~19!

and

^I ~s0 ,s!&5E rs0
~Z0!I ~s0 ,s,Z0!dZ0 . ~20!

The averagêI (s0 ,s)& is dependent onL only through the
behaviorFn22 with L. Thus this term cannot have anom
lous L „(n/2)(22j)2zn… scaling. Since theAm’s are arbitrary,
each term in the sum of Eq.~18! must be without anomalou
L „(n/2)(22j)2zn… scaling as well. The only way for this to oc
cur is if the anomalous L-dependent part o
F̄n

(m)(s) is proportional tof (L)slm. Dimensional consider-
ations imply thatf (L) also has a power-law behavior th
fixes the dimension ofFn .

Thus the projection ofFn over bm selects a particula
anomalous component. We conclude that the exponentslm ,
defined as the decay rates toward the invariant measure
precisely the anomalous exponents ofFn .

We can use the eigenfunctionsbn to expand the operato
g

gS Z0 ,Z,
s

s0
D5(

m
S s

s0
D 2lm

bm~Z!mm~Z0!. ~21!

g is a non-Hermitian operator and therefore we can exp
only thatbm andmm are biorthogonal families of functions
This means that if we expandFn in terms of the functions
mm , a projection onbm will extract a single term of the sum
which has a pure anomalous scaling exponent. This lead
to identify the functionsmm with the zero modes of the
Kraichnan operator, which were previously identified in@5,4#
as the anomalous scaling structures.

The structure ofg according to Eq.~21! implies that the
anomalous exponents ofFn are the poles of the Mellin trans
form of g with respect to the scales, with the functionsbm
and mm as residues. This representation is therefore an
gous to the more rigorous treatment given in@7#. The main
difference between our approach and@7# is that they treat the
velocity averaged Green’s function as the fundamental ob
while we considerg, which has a simple physical meanin
as a probability density function in the space of shapes m
sured in units of the scale. Note that due to the Mark
property of the stochastic process defining the configura
it suffices to specify the shape at an arbitrary time when
scale iss0 to determineg unambiguously and thereforeg
has the composition property.

We will use this formalism in the next section in an e
plicit perturbative calculation in large dimensions. This c
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culation demonstrates all the concepts discussed in this
tion and shows how they can be used as a calculatio
method.

IV. APPLICATION: LARGE- d PERTURBATION THEORY

The simplicity of the large dimension limit is due to th
following reason: Random trajectories tend to separate fa
the larger the dimension. This is because there are m
transversal directions in which to diffuse. This proper
which is well known for Brownian motion, is also true fo
our case of correlated, Markovian paths. Therefore, in
limit of infinite dimensions the motion becomes a determ
istic growth of the distance between each pair of points
dependently~note that the infinite number of direction
available makes such a motion possible!. This motion is sim-
ply the Richardson diffusion phenomenon, referred to abo
in which relative distancesl increase like

l;~ l 01t !1/~22j!. ~22!

This behavior means that any initialN-point configuration
will evolve towards a regular (N21)-dimensional simplex,
where all the relative distances are equal.

Whend is large but finite, trajectories fluctuate around t
deterministic infinite dimensional limit~22!, but the fluctua-
tions are small, ofO(1/Ad). This forms the basis of pertur
bation theory in 1/d.

Our procedure will be to examine the expectation value
a nondimensional symmetric combination of separatio
which we denotes. The relaxation of^s& towards its
asymptotic value is described by the set of relaxation ex
nentslm @see Eq.~21!#,

^sus&[E dZ s~Z!gS Z0 ,Z,
s

s0
D5(

m
S s

s0
D 2lm

s̄mmm~Z0!,

~23!

whereZ0 is the initial shape, implying an initial value fo
s(Z0). The s̄m’s defined as

E s̄m5dZ s~Z!bm~Z! ~24!

are numbers that only depend on the precise definition os.
We see from Eq.~23! that the functional dependence o
^sus& on the initial shapeZ0 is given by the zero modesmm .
An asymptotic expansion in larges/s0 will thus provide us
with the leading zero modes and their scaling exponents

A term in the asymptotic expansion^sus& is expected to
be, in the large-d limit, of the form

S s

s0
D 2l~0!2~1/d!l~1!1•••Fm~0!~Z0!1

1

d
m~1!~Z0!1••• G .

~25!

Expanding the exponent gives

S s

s0
D 2l~0!H m~0!~Z0!1

1

dF2l~1! lnS s

s0
D1m~1!~Z0!G1•••J .

~26!
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Hence the correction to the scaling exponent can be read
by looking at the logarithmic term in 1/d. Although nomi-
nally our expansion is in 1/Ad, it turns out that the first term
vanishes~see below!.

In principle, the statement that a logarithmic contributi
is the first term in an expansion of a power needs to
justified by showing that all higher-order terms of ord
(1/dn)ln(s/s0)

n are consistent with the first term. In our ca
this is not necessary. Rather, we consider a perturbative
pansion for the equivalent Fokker-Planck equation. In
Fokker-Planck equation the eigenvalues play the role of
exponentslm . Since perturbation theory finds corrections
the eigenvalues, we conclude that the logarithms must
to a pure power as expected.

The perturbative analysis will be carried out in terms
time as an independent variable rather thans. We thus need
at some stage to transform to thes variable in which our
theory is formulated. Since the dynamics are nearly de
ministic, for a givens, t is very narrowly distributed around
its Richardson diffusion valuet;s22j. We show that to the
order that was retained in the perturbation calculations i
sufficient to replacet by its Richardson diffusion value.

A. Representation in terms of separations,
and perturbation theory

The basic variables we use for analysis in high dim
sions are thens[N(N21)/2 interpoint square separation
q̃nm[(rn2rm)2. Their time evolution is obtained from Eq
~7! by the rules of the Ito calculus

d q̃nm~ t !

dt
5^~un2um!2&12~rn2rm!•~un2um!

52
q̃nm~ t !j/2

l j S d2
j

d211j D1h̃nm~ t !, ~27!

where the second equality serves to define the noise
h̃nm , a zero mean,d correlated in time Gaussian proces
The equations are again to be interpreted as Ito stoch
differential equations. Thens separations are subject to tr
angle inequalities that are preserved by the dynamics~27!.

The deterministic part in Eq.~27! gives simple Richard-
son diffusion with the exponent 2/(22j)[2/z2, whereas all
the nontrivial behavior is contained in theh̃ terms that
couple between the different separations. Whend is large the
noise term in Eq.~27! becomes small with respect to th
deterministic term and this phenomenon serves as the s
ing point for perturbation theory. In order to demonstrate t
it is convenient to factor out the superdiffusive behav
from q̃nm , defining

q̃nm~ t !5S 22j

l j d~ t1tnm! D 2/~22j!

qnm~ t !, ~28!

where tnm is a constant determined by initial condition
Substituting in Eq.~27! yields @here and in the following we
neglect the higher-order termj/(d211j) coming from in-
compressibility#
ff

e

x-
e
e

m

f

r-

is

-

rm
.
tic

rt-
s
r

q̇nm5
2

22j

1

t1tnm
~qnm

j/22qnm!1
1

Ad
hnm~ t !, ~29!

where

hnm5S 22j

l j d~ t1tnm! D 22/~22j!

h̃nm . ~30!

The covariance ofhnm is @using the abbreviationq̄nm5(t
1tnm)2/(22j)qnm]

^hnm~ t !hkl~ t8!&5
2

z2
~ t1tnm!22/z2~ t1tnl!

22/z2

3~ q̄nl2q̄ml2q̄nk1q̄mk!~ q̄nl
12z2/2

2q̄ml
12z2/2

2q̄nk
12z2/2

1q̄mk
12z2/2

!d~ t2t8!.

~31!

This covariance is of order 1 ind, so that the stochastic term
in Eq. ~29! is indeed small ford@1. Thus the dynamics o
Eq. ~29! is dominated by the attractive fixed pointqnm51 of
the deterministic term and the random term causes sm
fluctuations around it.

Perturbation theory is performed in a straightforwa
manner by expanding

qnm511
1

Ad
qnm

~1!1
1

d
qnm

~2!1¯ ~32!

and

hnm5
1

Ad
hnm

~1!1
1

d(k,l
hnm,kl

~2! qkl
~1!1¯ . ~33!

The noise terms are white Gaussian zero-mean proce
The correlation matrix ofhnm

(1) is obtained from Eq.~31! by
substitutingsnm→12dnm . The correlations involvinghnm

(2)

are more complicated, but are not needed to the order tha
keep in the calculations.

The terms in the perturbation series~32! obey linear in-
homogeneous equations

q̇nm
~1!52

1

t1tnm
qnm

~1!1hnm
~1! ~34!

and

q̇nm
~2!52

1

t1tnm
S qnm

~2!1
j

4
~qnm

~1!!2D1(
k,l

hnm,kl
~2! qkl

~1! ,

~35!

with respective solutions

qnm
~1!~ t !5

1

t1tnm
E

0

t

dt8~ t81tnm!hnm
~1!~ t8!, ~36!

and
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qnm
~2!~ t !5

1

t1tnm
E

0

t

dt8F2
j

4
qnm

~1!~ t !21~ t81tnm!

3(
k,l

hnm,kl
~2! ~ t8!qkl

~1!~ t8!G . ~37!

B. Results for three- and four-point functions

In this section we are going to use the results of per
bation theory derived above to demonstrate multiscaling
the three- and four-point correlation functions. For this p
pose we make the~arbitrary! choice

s[ns

(
n,m

q̃nm
2

S (
n,m

q̃nmD 2 . ~38!

The definition of the overall scale is chosen to be

s5A1

N (
n,m

q̃nm. ~39!

It is shown in Sec. IV C that replacingt by sz2 is correct to
the order that we keep in the following calculation.

Substituting the perturbation series~32! to order 1/d gives
the expansions5s (0)1(1/Ad)s (1)1(1/d)s (2)1•••, where
we have defined
a

r-
n
-

s~0!5ns

(
n,m

rnm
4/z2

S (
n,m

rnm
2/z2D 2 , ~40!

s~1!5s~0!F 2
(
n,m

rnm
4/z2qnm

~1!

(
n,m

rnm
4/z2

22
(
n,m

rnm
2/z2qnm

~1!

(
n,m

rnm
2/z2

G , ~41!

s~2!5s~0!F (
n,m

rnm
4/z2~qnm

~1!!2

(
n,m

rnm
4/z2

12S (
n,m

rnm
4/z2qnm

~2!

(
n,m

rnm
4/z2

2

(
n,m

rnm
2/z2qnm

~2!

(
n,m

rnm
2/z2

D 13S (
n,m

rnm
2/z2qnm

~1!

(
n,m

rnm
2/z2

D 2

24
(
n,m

rnm
4/z2qnm

~1!

(
n,m

rnm
4/z2

(
n,m

rnm
2/z2qnm

~1!

(
n,m

rnm
2/z2

G . ~42!

~We used the abbreviationrnm5t1tnm .)
When t@tnm , ^s& is dominated by contributions from

the leading zero modes, and we therefore check its asy
totics in this limit. In the limiting cased5` we have, fort
→`,
^s&5s~0!;ns

(
n,m

11~4/z2!~tnm /t !1~2/z2!~4/z221!~tnm /t !2

S (
n,m

11~2/z2!~tnm /t !1~1/z2!~2/z221!~tnm /t !2D 2 ;11
4

nsz2
2(

n,m
S tnm

t D 2

2
4

~nsz2!2S (
n,m

tnm

t D 2

.

~43!
-
In the special caseN53, ns53 Eq. ~43! can be written as

s~0!;11
8

9z2
2

Z3

t2 , ~44!

whereZ3 is the leading three-point zero mode

Z35 (
nÞm,l
m, l

~tnm2tnl!
2. ~45!

s (0) is thus a linear combination of zero modes~up to order
t22) as expected.

The O(1/Ad) contribution ^s (1)& vanishes sincêh (1)&
50, so that we proceed to examine theO(1/d) term. Up to
order t22, ^s& contains, in addition to the constant term,
term that is proportional to lnt/t2. This term reflects the de
pendence of the scaling exponent ond and we will therefore
display only this term explicitly.

The first step consists of calculating moments of thes
functions:

^qnm
~1!~ t !2&5

1

~ t1tnm!2E0

t

dt8dt9~ t81tnm!~ t91tnm!

3^hnm
~1!~ t !hnm

~1!~ t8!&

5
4

z2
S 12

tnm
2

~ t1tnm!2D , ~46!
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^qnm
~2!~ t !&5

1

~ t1tnm!S 2
j

4D E
0

t

dt^qnm
~1!~ t8!2&

52
22z2

z2
E

0

t

dt8S 12
tnm

2

~ t81tnm!2D . ~47!

~The term proportional toh (2) drops on averaging due to th
Ito convention.! Thus terms involving only one separation d
not contribute logarithmic terms to this order.

The large-t asymptotics of the cross correlation of tw
separations with one common vertex is

^qnm
~1!~ t !qnl

~1!~ t !&;c0nml1
c1nml

t
1

2

z2

ln t

t2 S 2

z2
21D

3F 1

z2
~tnm

2 1tnl
2 !1S 2

z2
21D

3~tnm
2 1tnl

2 2tml
2 !1S 2

z2
21D tnmtnl

2S 4

z2
21D ~tnm1tnl!~tnm1tnl2tml!

1
2

z2
~tnm1tnl2tml!

2G . ~48!

Summing over permutations gives

(
nÞm,l
m, l

^qnm
~1!~ t !qnl

~1!~ t !&; c̃01
c̃1

t

1
2

z2

ln t

t2 S 2

z2
21D S 2

z2
11DZ3 .

~49!

We conclude that the only terms in̂s (2)& that generate
logarithms are the ones involving cross correlations oq
variables, i.e., the last two in Eq.~42!. Of these terms we
need only keep the leading order in 1/t, giving

^s~2!&5c01
c1

t
2

4

9z2
S 2

z2
21D S 2

z2
11DZ3

ln t

t2 . ~50!

Combining the contributions from Eqs.~44! and ~50! yields

^s&;11
8

9z2
2

Z3

t2 F12
j

2S 2

22j
11D ln t

d G , ~51!

which implies, after substitutingt→s22j,

z352~22j!1
j

2d
~42j!1OS 1

d3/2D . ~52!

A similar analysis is needed for the caseN54, ns56.
The infinite-dimensional limit becomes in this case

s~0!;11
1

9z2
2

Z31Z4

t2 , ~53!
where the leading-order four-point zero mode is

Z45 (
n,m, k, l

n,k

~tnm2tkl!
2. ~54!

We also need cross correlations of separation variables w
out a common vertex, whose large-t asymptotics are

^qnm
~1!qkl

~1!&;S 2

z2
D 2S 2

z2
21D ln t

t2 ~tnl2tml2tnk1tmk!
2,

~55!

and summing over permutations gives

(
n,m, k, l

n,k

qnm
~1!qkl

~1!;S 2

z2
D 2S 2

z2
21D ln t

t2 ~22Z41Z3!.

~56!

As in the three-point case, we collect the contributions fro
Eqs.~53!, ~55!, and~56!, giving

^s&;11
1

9z2
2

1

t2H Z31Z41
ln t

d
jF2S 3

2z2
1

1

2DZ31
4

z2
Z4G J
~57!

and the dependence onZ4 implies that

z452~22j!2
4j

d
1OS 1

d3/2D , ~58!

in agreement with@5#. Equation~57! yields further informa-
tion by checking the contributions proportional toZ3; the
relative strength of the logarithmic terms is different fro
that obtained in the three-point analysis; see Eq.~51!. The
reason is thatZ4 generates contributions proportional toZ3
at first order, so that it is no longer an approximate ze
mode whend is finite and the degeneracy between the thr
point and four-point zero modes breaks down. It is not d
ficult to build the four-point zero modeZ̄4 that continues
correctly from infinite to finite dimensions as a linear com
bination ofZ3 andZ4,

Z̄45Z41
4

122j
Z3 . ~59!

C. The t˜s transformation

The previous analysis relied on calculations as a funct
of time and the transformation to a representation as a fu
tion of the total scale was carried out by the simple sub
tution t→sz2. The purpose of this subsection is to show th
corrections due to a nontrivial dependence ofs on t do not
contribute terms of the order that was kept above, i
O(1/t2) andO(ln t/dt2).

It should be emphasized that even whend is very large,s
is not a monotonic function oft and this is evident even in
first-order perturbation theory. However, the size of the ti
interval in which one is likely to find the same value ofs
becomes very small. In order to estimate the width of t
interval, supposes( t̄ )5 s̄. We ask for which values oft it is
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likely that s( t̄ 1t)5 s̄ as well. We know that for smallt

s~ t̄ 1t!; s̄1Ct1
B

Ad
Atv, ~60!

wherev is a random variable withO(1) variance andB and
C are some order 1 numbers. The deterministic part is mo
tonic and may be compensated by the fluctuating part to g
a solution only if t5O(1/d). This is our estimate for the
width of the multiple solution region. Replacing the earlie
solution for t(s) by some other arbitrary solution thus in
duces anO(1/d) error in t, which is too small to affect the
results to the order that we keep.

In addition, up toO(1/d) we may assume thats(t) is a
one-to-one mapping and may invert the relation to obt
t(s). s may be written~up to a constant multiplier! as

s~ t !;A1

N (
n,m

~ t1tnm!2/z2S 11
1

Ad
qnm

~1!~ t !1••• D .

~61!

Inverting to expresst as a function ofs gives

t5t0~s!S 12
1

t0~s!

2

z2
(
n,m

tnm2
1

Ad
(
n,m

qnm
~1!
„t0~s!…D

1 ~higher-order terms!, ~62!

where t05sz2. We see that toO(1/Ad), t may indeed be
considered as a single-valued function ofs, which is, how-
ever, randomly shifted with respect to the zeroth-order e
mate. We are now going to show that this correction does
contribute to the perturbative results either.

We substitutet(s) in the asymptotic expression fors (0)

@see Eq.~43!, keeping the dependence ontnm implicit#,

s~0!;11
F~tnm!

t2
;11

F~tnm!

t0
2 F11

2

t0

2

z2
(
n,m

tmm

1
2

Ad
(
n,m

qnm
~1!~ t0!1

3

dS (
n,m

qnm
~1!~ t0! D 2G . ~63!

It follows after averaging that corrections tot0 will contrib-
ute only terms ofO(1/t0

3) andO(ln t0 /dt0
4).

^s (1)&, which vanishes when one takest5t0 as in Sec.
IV B, is nonzero when corrections tot0 are taken into ac-
count. The leading nonzero terms are proportional to

1

Ad
(
n,m

tnmqnm
~1!

t0
(
k,l

qkl
~1!~ t0!, ~64!
-

o-
e

t

n

i-
ot

whose expectation is ofO(1/Adt0) andO(d23/2ln t0 /t0
3). Fi-

nally, it is clear that corrections tot0 in ^s (2)& cannot change
the leading logarithmic behavior. We conclude that to t
order to which the above calculations were carried out i
safe to taket5t05sz2.

V. CONCLUSIONS AND FURTHER APPLICATIONS

In this paper we have presented a path-oriented appro
to the study of passive scalar advection. The main differe
between this approach and other studies is that we do
need to consider the whole flow~and scalar! field; rather, an
N-point correlation function is described via the evolution
N Lagrangian trajectories. This allows us to study ordina
differential equations~albeit stochastic ones! instead of par-
tial differential operators. The anomalous scaling is due
relaxation towards an invariant distribution of the instan
neous shapes. Since the relaxation rates are associated
excited states of an evolution operator these scaling ex
nents are not related to the normal scaling and dimensio
reasoning cannot be applied.

The Lagrangian trajectories become nearly determini
in very large dimensions~up to random solid body rotations!.
This property explains why the dynamics simplifies in th
limit and also serves as a starting point for an expans
Using perturbation theory, all the ingredients of the pres
anomalous scaling picture were demonstrated in an exp
and concrete manner and perturbative corrections to
anomalous exponents were calculated.

In addition to the perturbative application, it is possible
use the same concepts for numerical Monte Carlo sim
tions. The main numerical task is to generate the rand
trajectories, which can be done using standard meth
However, in preliminary studies severe problems of conv
gence prevented us from obtaining precise results and th
fore the presentation of the numerical application is po
poned@11,12#. It would also be interesting to see how th
other integrable limits of this model (j→0 andj→2) ap-
pear using the present ideas.
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