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Multiscaling in passive scalar advection as stochastic shape dynamics
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The Kraichnan rapid advection moddthys. Fluidsll, 945 (1968; Phys Rev. Lett72, 1016(1994] is
recast as the stochastic dynamics of tracer trajectories. This framework replaces the random fields with a small
set of stochastic ordinary differential equations. Multiscaling of correlation functions arises naturally as a
consequence of the geometry described by the evolutioN dfajectories. Scaling exponents and scaling
structures are interpreted as excited states of the evolution operator. The trajectories become nearly determin-
istic in high dimensions allowing for perturbation theory in this limit. We calculate perturbatively the anoma-
lous exponent of the third- and fourth-order correlation functions. The fourth-order result agrees with previous
calculations[S1063-651%98)06105-4

PACS numbds): 47.27.Gs, 47.1%]j

I. INTRODUCTION flow, without explicit reference to the forcing. In fact, one
does not need to define a passive scalar field since all the
Although most researchers in the field of turbulence agre@roperties we are interested in are included in the shape dy-
that the structure functions of the velocity field exhibit mul- namics. Note that this explains why the two-point correlation
tiscaling, there is no well-understood mechanism for thisfunctions do not have anomalous scaling: The geometry of a
phenomenon that would allow, even in princip|e, a SystemIWO-pOint configuration is trivial since it is completely de-
atic calculation of the values of the multiscaling exponentsscribed by the distance between the points.
[]_] The Kraichnan rapid advection mod@ﬂ is a S|mp||f|ed We will show that this picture formally contains all the
model for turbulent advection of a passive scalar in which dngredients of anomalous scaling in the dynamics of passive
mechanism for multiscaling has been identified. Althoughscalars. Furthermore, it is useful as a calculational scheme.
the relevance of this mechanism to multiscaling in fully de-We will demonstrate this by presenting an alternative deri-
veloped turbulence in still unclear, the study of multiscalingvation for perturbation theory in large dimensions. We be-
in Kraichnan’s model presents an alternative approach anligve that the physics of passive scalar advection in large
therefore has attracted much interest recefghy8). dimensions becomes more transparent in this framework. We
One of the main advances in studying this model was th&alculate the previously unknown perturbative correction to
identification of anomalous scaling contributions to correla-the anomalous exponent of the third-order correlation func-
tion functions that are zero modes of certain linear partiation and recover the known result for the fourth-order case
differential operator§5]. Although this identification has al- [5]-
lowed for the development of perturbation theories for the In Sec. Il we present the path-integral formalism of pas-
Computation of the anomalous exponents, the meaning cﬁive scalar advection and show how correlation functions can
these structures is, in our view, still somewhat obscure. Th&€e written as averages over Lagrangian trajectories. In Sec.
purpose of this paper is to reinterpret the anomalous expd!l we exploit this picture to identify a mechanism for gen-
nents as eigenvalues of an evolution operator for the relativeration of anomalous scaling and show how the anomalous
shape of trajectories of particles advected by the flow. Th&xponents are related to eigenvalues of an evolution opera-

zero modes arise naturally as the adjoints of the set of eigerior. In Sec. IV we apply this picture to calculate perturba-
functions of this evolution. tively the first correction to the anomalous exponents in large

Our method is to consider the evolution Nf particles ~ dimensions. Section V is devoted to a summary and conclu-
with the flow. TheseN particles define a configuration that Sions.
has an overall scale and a normalized shape. Under the flow
dynamics, the overall scale tends to increase while the shape. LAGRANGIAN PATH FORMULATION OF PASSIVE
will asymptotically be described by a stationary measure. We SCALAR ADVECTION
consider the rate at which a distribution of initial shapes ) ] ]
tends towards its stationary distribution. It is important to ~ The dynamics of a passive scataadvected by an incom-
consider this rate in terms of the overall scale. Doing this, wePressible velocity fields are described by
find the decay rate towards the stationary state to be a com-
bination of power laws in this scale. We identify these power 3.0(r,t)=xkV20(r,t) —u-Vo(r,t)+f(r,t), 1)
laws with the anomalous exponents of the passive scalar.
Thus we view the anomalous scaling as a dynamic propertwhere is the molecular diffusivity and models the injec-
of the evolution of trajectorief7]. tion and extraction of a scalar by external sources. The prop-
This point of view treats the anomalous scaling as a geoerties ofu andf are given presumably as the result of some
metric property of the trajectories of fluid particles in the physical process.
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In the rapid advection mod€2] the velocity field is taken and # is a vector of zero-mean-independent Gaussian white
to be a random Gaussian fieldlcorrelated in time and with random variables.

self-similar correlations in space: The physical meaning of this equation in simply under-
stood if we consider th&=0 case: The trajectorieg are
(Lu(r,)y—u(r’,t)]efu(r,t’)—u(r',t")]) simply the characteristics of the partial differential equation
—h(r=r")8(t—t') @) (PDE) (1), namely, the Lagrangian trajectories of the flow
' field u. If we want to know how much scalar is at poimt )
where the “eddy-diffusivity” tensom is defined by we need to see what the value 8éfwas where this point

came from and add the accumulating forcing along the path
traced backward in timg3d]. When « is positive the trajec-

; (3)  tories are randomly perturbed Lagrangian trajectories and the
scalar 6 is obtained as an average ovegr This procedure

where the coefficients are chosen such tNah=0. The gegiz?]testhtge gltT-Jiﬂtc:an rt§|r To:rr]nzsl?é )m we want to compute
forcing f is also taken to be white in time, Gaussian, and is 9 P 9 ' P

characterized by a single large scéale correlation functions of the type

_(r)§ & ror
hO=1Z] \ 1" a1 2

FrOfr V) =E(r—r")8t—t"), (4) Fo(re, ... i) =(0(ry)---0(rn))us» (10

where the functionZ(r) is nearly constant for<L and  where(A),  denotes an average over realizations of velocity

decays rapidly for>L. and forcing. Substituting each factor éfr;) by its represen-
The rapid advection model is theoretically attractive duetation(7), we can perform thé averages explicitly, yielding

to the fact that the equations for the correlation functions are

linear partial differential equations as opposed to the hierarF2,(r1, . . .\ 2n,t)

chy of nonlinear integro-differential equations for fully de- .

veloped turbulence. Some theoretical progress has been :< f dty- - - dt [E(r(t) —ra(ty)) -

made in the case of the rapid advection model and it is pre- —o

dicted that the Ath-order correlation function behaves as

XE(ron_1(th) = ra,(tp))+ permutation$> , (1
u,n

Fon(ras -+« r2n)

L9 Ln (F) -
L (Cot -+ HC(r/L)720Fan(1) ++-2), ®  hile the odd moments vanish. Each of the trajectories

obeys an equation of the for(8), whereu as well asy is a
tochastic variable, whose correlation function is given by
g.(3). The procedure just described is a Langevin dynamics

of N particles, with correlated noise. Incompressibility of

implies that Eq.(9) should be interpreted in the Ito sense.

inhomogeneous terms, whose scaling is determined by d dina Fokker-Planck " ith ‘1
mensional analysis, or they are the homogeneous solutions pe corresponding FOKKer-rianck equation with respect 1o
oth » and u is precisely the well-known homogeneous

moment equations, whose scaling exponents are not co .
g g &p raichnan PDE for the 2th moment{10].

strained by dimensional arguments. The exponents and scar n ion & ai : b d
ing functions are expected to be universal, but not the | N€ representation &y, given in Eq.(11) can be turne

wherer<L is a typical distance between points andle-
notes a set of dimensionless variables describing the config
ration of the 2 points. According to the existing theory, the
terms in the expansio(b) are of two types: Either they are

coefficients, which depend on the details of forcing. into a recursive expression by ordering the . . . t, inte-
The exponent.,, that dominates when considering struc- 9rations such thay >t,> - - ->t,. Since Eq.(11) contains
ture functions all permutations inry, this ordering can be done without
changing the results. The timeés, . . . t,, can be integrated
San(r1,r2) =([6(r,1) = 6(r5,1)]%") (6)  outto give
is the scaling of the leading term in E(p) that depends F, (ry, ... rypn,t)

nontrivially on all of the 2 variables. Anomalous scaling
occurs when this term is due to homogeneous solutions.

As the path-integral formalism for Eql) is well docu-
mented 8], we will not detail it here. The main conclusion is
that one may write its solution formally

t
:< fﬁxdtl[a(rml)—r;(tl))

X Fon_o(r3(ty), . .. ra,(t1))+ permutationd
t u,n
01,0 = f d(f (' (1)), ) (12)
with the trajectoryr’ obeying This form for F,,, is useful because it contains only a single
time integration, so that one needs to follow a joint trajectory
r'(t)=r, (8) of 2n particles at the same time and integrate along this

trajectory the forcing defined by the terms in the square
At () =u(r’ (t),t")+ 2k n(t) (99  brackets in Eq(12).
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We intend to study the smak-limit of the problem. If a s, the configuration coordinates aXg=s,Z,. Note that the
given trajectory realization does not contain a “near hit” shape coordinates are constrained. The overall scale is a ho-
among the trajectories, we expect that #we O trajectories mogeneous function of degree one of the coordinates
are in some sense near the smattajectories. The only case =S(X,), but its exact functional form is to a large degree
wherex=0 differs radically from the smalk limit is when  arbitrary.
two (or more trajectories become closer th&@(xY(~9). The shape evolves in time. We fix a scale s, and ex-

As we are interested only in separated correlation functionsamine the shape when the configuration reaches the scale
we neglect the corrections to the=0 limit in what follows.  for the first time(we know that this occurs in finite time with

All the existing studies of the Kraichnan model are basedrobability ong. Since the trajectories are random the new
on analyzing the Kraichnan linear PDEs. Most of these studshapeZ is taken from a distributiony(Z,,Z,s/sy). We used
ies identify the anomalous contributions as scale-invarianscale invariance to deduce that the distribution is a function
functions of the coordinates that are annihilated by theof s/s,.

Kraichnan operator; thus they were termed zero modes. Most For a shape picked from an initial distribution of shapes

researchers accept the picture that correlation functions aig, (z,) with scales,, the final shape distribution at scalés
obtained as a sum of zero modes with different anomalous °

scaling exponents and a contribution that is directly related
to the forcing that is not anomalous. A notable exception to _f ( 5

. . . Z)=| dz Z Zy,Z,—]. 13
this approach is the Kraichnan closure, based on an appeal- ps(2) 0Po(Z0)7| Zo (13
ing but unproven conjecture on conditional expectations of

diffusive momentg3]. For very large values of/s, we expect the final shape dis-

. The CIO mmon fea;[jure forf_thltas?_iapproaches is that thf Pafibution to approach an asymptotic distributig(Z). This
sive scalar Is treated as a field. Here we propose an alteMgg i ion is invariant under the transformatiti8) and is
tive viewpoint based on Edq11), in which all the properties an eigenfunction ofy with eigenvalue 1. In general, we ex-

of Iot\;v—orc}er molmteTjts tareh ext'gra;:te_d l?y _Iook_||_nhg at a Sma{gect a spectrum of eigenfunctios for y with eigenvalues
number of correlated stochastic trajectories. The represen & (s/s). By successive applications of it follows that

tion (11) expresse$,,, as the expectation value of the forc- a,(s/s0) = (s/sy) . Furthermore, we assume that the

ing correlation function accumulated over the Lagrangian
eigenfunctionsB,(Z) form a complete set. Thus any initial
trajectories. Since the forcing drops off sharply beydnd
) ; . ._distribution of sh Z) can be written
these objects measure the correlation of the times for whwﬁ stribution of s ape$so( ) can be written as

the trajectory positions are composed of pairs of points that
are within distancé.. In particular, the two point momef,
is the average time during which two trajectories that end at Pso(z):; AnBn(Z). (14)
given distance of each other stay within distabhcdexclud-
ing the casel=2,£=0, the trajectories will leave the vicinity S ]
of each other with probability 1 and the integrals in Ert) ~ This distribution evolves into
converge for each realization. It should be noted that the
representation described above can be used in principle as a s\ A
numerical scheme for computing directly the correlation ps(2)=2, Am(s_) Bm(Z). (19
functionsF,,, using a Monte Carlo method without the need m 0
to generate the whole velocity fie[d1,12.
In what follows we show how one can eliminate the forc- Consider an average of a correlation functiep(X) over
ing and the outer scale from the problem. Anomalous scalmqpS ,
arises from a relaxation process, in which the configuration
tends towards an asymptotic stationary distribution, while
the overall scale increases. The outer scale serves as a refer- <Fn|So>:f dZ F(sZ)ps(Z). (16)
ence point for this process, but is not intrinsic to the process
itself.
We now use the representati@i®) for F,(sy,Z0). We split
Ill. SHAPE EVOLUTION OPERATOR AND ITS thg integration along the Lagrangian trajectory at the first
RELATION TO MULTISCALING point where the overall scale reaches the vauk follows
from the shape evolution equatioh3) that we can write
A component of the evolution of an initial configuration is
a rescaling of all the coordinates that all increase on the s
average liket2; this rescaling is analogous to Richardson F n(S0,Z0)=1(Sg,8 zo)+f dz 7( Zo.Z, ) Fn(s,2).
diffusion for the present casgl]. The dynamic exponent So
{,=2—¢ is also the characteristic exponent of the second- (17
order structure functiofi2]. After factoring this overall ex-
pansion we are left with a normalized “shape.” It is the | is the average of the contribution a specific forcing accu-
evolution of this shape that determines the anomalous scathulated along the path froms, to s. The forcing is that of
ing. Eq. (12), so that fors small enough itd. dependence is only
Consider an initial shapg, with an overall scale,, that  throughF,_,. Averaging Eq.(17) with ps (Zo) gives
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culation demonstrates all the concepts discussed in this sec-
f dZ[ps,(Z)Fn(s0Z) = ps(Z)Fn(sZ)] tion and shows how they can be used as a calculational
method.

N
_ _ Zme | 3] M=tm)
_<|(S°’S)>_% Am[F” (So) (s()) Fal(s), IV. APPLICATION: LARGE- d PERTURBATION THEORY
(19 The simplicity of the large dimension limit is due to the
following reason: Random trajectories tend to separate faster
where the larger the dimension. This is because there are more
transversal directions in which to diffuse. This property,
EM) (o) — which is well known for Brownian motion, is also true for
Fa'(s) J,Bm(Z)Fn(sZ)dZ (19 our case of correlated, Markovian paths. Therefore, in the
limit of infinite dimensions the motion becomes a determin-
and istic growth of the distance between each pair of points in-
dependently(note that the infinite number of directions
(1(s0,8))= f ps (Zo)(S0,8,20)dZ,. (20) available makes such a motion possjbiEhis motion is sim-
0 ply the Richardson diffusion phenomenon, referred to above,

) in which relative distancekincrease like
The averaggl (sy,s)) is dependent oh only through the

behaviorF,_, with L. Thus this term cannot have anoma- I~ (lp+1) 29, (22)
lous L("2(2=8~¢n) scaling. Since theA,’s are arbitrary,

each term in the sum of E18) must be without anomalous This behavior means that any initil-point configuration
L2 (2=8~4n) scaling as well. The only way for this to oc- will evolve towards a regularN—1)-dimensional simplex,
cur is if the anomalous L-dependent part of where all the relative distances are equal.

ations imply thatf(L) also has a power-law behavior that deterministic infinite dimensional limit22), but the fluctua-

fixes the dimension of . tions are small, oD(1/y/d). This forms the basis of pertur-
Thus the projection of, over B, selects a particular Dation theory in Id. _ _

defined as the decay rates toward the invariant measure, afle "ondimensional symmetric combination of separations,

precisely the anomalous exponentsFof. which we denotes. The relaxation of(o) towards its

We can use the eigenfunctiogs to expand the operator asymptotic value is described by the set of relaxation expo-

) nents\,, [see Eq(21)],

Am

s\ ~m B S —E (s) _
-3 (S_O) 8 (Dun(Ze). (@D <o|s>=f 02 0%\ 202 =2 (o] ompn(Zo).
(23

ZZS
70”50

v is a non-Hermitian operator and therefore we can expe
only that 8, and u,,, are biorthogonal families of functions.
This means that if we expan, in terms of the functions
Mm, & projection org,, will extract a single term of the sum,
which has a pure anomalous scaling exponent. This leads us j on=0dZ o(Z)Bn(Z) (24)
to identify the functionsu,, with the zero modes of the
Kraichnan operator, which were previously identified 5]
as the anomalous scaling structures.

The structure ofy according to Eq(21) implies that the

cd\/herezo islhe initial shape, implying an initial value for
o(Zy). Theop,'s defined as

are numbers that only depend on the precise definition. of
We see from Eq.(23) that the functional dependence of

anomalous exponents Bf, are the poles of the Mellin trans- (als) on the |'n|t|al shape"_o'ls given by the Zero mOd.qu'
An asymptotic expansion in larggsy will thus provide us

form of y with respect to the scalg with the functionsgr, with the leading zero modes and their scaling exponents.

and u, as residues. This representation is therefore analo- A term in the asymptotic expansidw]s) is expected to
gous to the more rigorous treatment given{ . The main be, in the larga limit, of the form

difference between our approach didis that they treat the

velocity averaged Green’s function as the fundamental object

while we considery, which has a simple physical meaning (0) l (1) o

- : 2 < w(Zo)+ Z T (Zo) +

as a probability density function in the space of shapes mea- \Sp d

sured in units of the scale. Note that due to the Markov (29

property of the stochastic process defining the configuration . .

it suffices to specify the shape at an arbitrary time when th&xPanding the exponent gives

scale issy to determiney unambiguously and thereforg \©

has the composition property. > 1O(Z)+ E
We will use this formalism in the next section in an ex- \ s, o7 d

plicit perturbative calculation in large dimensions. This cal- (26)

s ) AO— (D ...

2D nl = +M(1)(Zo) +...
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Hence the correction to the scaling exponent can be read off 2

by looking at the logarithmic term in d/ Although nomi-
nally our expansion is in 1/d, it turns out that the first term
vanishegsee below.

In principle, the statement that a logarithmic contribution
is the first term in an expansion of a power needs to be 2—¢ —22-¢)
justified by showing that all higher-order terms of order nnm:(_/gd(t"'Tnm))
(1/d™In(s/sp)" are consistent with the first term. In our case '
this is not necessary. Rather, we consider a perturbative ex- _
pansion for the equivalent Fokker-Planck equation. In théThe covariance ofy,, is [using the abbreviatiom,,,= (t
Fokker-Planck equation the eigenvalues play the role of ther 7,,) %2 9q
exponents\ ,,. Since perturbation theory finds corrections in
the eigenvalues, we conclude that the logarithms must sum

Q=5 (G2 o)+ = Ton(D), (29
nm 2—Et+ 1y M nm \/annm )

where

Tnm- (30)

to a pure power as expected_ <7]nm(t) nkl(tI»: é«_2(t+ 7-nm)izlévz(t—'— 7-nl)72/§2
The perturbative analysis will be carried out in terms of L
time as an independent variable rather tkalVe thus need X (01— Ami— Ankt+ qu)(alm*‘uzl2
at some stage to transform to tkevariable in which our e o 1L
theory is formulated. Since the dynamics are nearly deter- L TR e N +qu§2 )o(t—t').

ministic, for a givens, t is very narrowly distributed around (31)
its Richardson diffusion value~s?~¢. We show that to the

ordgr. that was retained. in the perturbat_ion galculations It iSThis covariance is of order 1 ith, so that the stochastic term
sufficient to replacé by its Richardson diffusion value. in Eq. (29) is indeed small fod>1. Thus the dynamics of
Eq. (29) is dominated by the attractive fixed poipt,,=1 of
A. Representation in terms of separations, the deterministic term and the random term causes small
and perturbation theory fluctuations around it.

The basic variables we use for analysis in high dimen- Perturt?ation thde_ory is performed in a straightforward
sions are theng=N(N—1)/2 interpoint square separations manner by expanding
Anm=(rn—"m)?2. Their time evolution is obtained from Eq.

1 1
(7) by the rules of the Ito calculus Onm=1+ ﬁq(nln)ﬁr aq%jL... (32)
d Qo)
(r;r: :<(un_um)2>+2(rn_rm)'(un_um) and
() £ |~ 1 1
ey R G = g 53 el e @

where the second equality serves to define the noise terfhil’® Noise terms are whi(tle) Gaussian zero-mean processes.
Tnm. @ zero meang correlated in time Gaussian process.The correlation matrix obyp, is obtained from Eq(31) by

. . . ituti _ i i i (2)
The equations are again to be interpreted as Ito stochastRUPSttUtingsym— 1=y, The correlations involvingy,m

differential equations. The separations are subject to tri- re more complicated, but are not needed to the order that we
angle inequalities that are preserved by the dynar@@s keep in the calculations. _ . . .

The deterministic part in Eq27) gives simple Richard- The terms in the perturbatlon seri€d?) obey linear in-
son diffusion with the exponent 2/(2¢)=2/¢,, whereas all omogeneous equations

the nontrivial behavior is contained in the terms that 1
couple between the different separations. Wiéslarge the gt =— o (g ) (34)
noise term in Eq.{27) becomes small with respect to the Thm
deterministic term and this phenomenon serves as the start- q
ing point for perturbation theory. In order to demonstrate this?"
it is convenient to factor out the superdiffusive behavior

q ini 5(2) 1 @, & 42
from qpnn,, defining =——— gyt = (A5

t+7m 4

nm—

+; Trmkidid”
~ 2—-¢ 22-§) (35)
q””‘(t):< /% d(HT“m)) Anrm( 1), 8) with respective solutions

1

where 7,, is a constant determined by initial conditions. (1)) —
Anm(t) = t+ 7
nm

Substituting in Eq(27) yields[here and in the following we
neglect the higher-order ter§l(d— 1+ &) coming from in-
compressibility and

t
deV+mwﬁmvx (36
0
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3 (Dt

4qnm( ) +(t"+ 7hm)

(2) 1 !
() = mjd [

XZ 77nmk|(t )q(l)(t/)} (37)

B. Results for three- and four-point functions

In this section we are going to use the results of pertur-

OMRI GAT AND REUVEN ZEITAK

2 p‘w2

bation theory derived above to demonstrate multiscaling in

the three- and four-point correlation functions. For this pur-
pose we make théarbitrary choice

E Uim

o= ns—z. (38
(E qnm)
nm
The definition of the overall scale is chosen to be
1
VN2, o @

It is shown in Sec. IV C that replacirigby s°2 is correct to
the order that we keep in the following calculation.

Substituting the perturbation seri€@?) to order 14 gives
the expansiow= o9+ (1/\/d) o™+ (1/d) @ + - - -, where
we have defined

> 1+ (ML) (Taml )+ (218) (41— 1) (Tml1)?

o @=pn—" (40)
p
4/ 1 2/¢ 1
;ﬂ P2l ;ﬂ et
V=g 2- —-2— , (4
4/¢ 21¢
> poee > pos?
n,m n,m
4 1 AlLp (2
> P2 > paza2)
D=0 ”'m—+2 “'—
4l 4l
> pos? > pose
n,m n,m
21 2 21¢ 1)
> poqll) > porqlh
_ n,m i3 n,m
21 21¢
2 Pom 2 Py
a1 3 2Hzg(1)
2 pnmq nm
n,m n,m
—4 (42
4/(2 2/{2

(We used the abbreviation,,=t+ 7,,.)

When t>7,,, (o) is dominated by contributions from
the leading zero modes, and we therefore check its asymp-
totics in this limit. In the limiting casel=«~ we have, fort

—>OO,

4

(0)=0®n,

In the special casbl=3, ng=3 Eq.(43) can be written as

8 Z;
01+ — =2
whereZ; is the leading three-point zero mode
Z3= 2 (Thm— 7'n|)2- (45
n#m,l
m<lI

(® s thus a linear combination of zero mode to order
t~?) as expected.

The O(1/y/d) contribution (¢®) vanishes sincd 7")
=0, so that we proceed to examine 1B¢1/d) term. Up to

ordert™2, (o) contains, in addition to the constant term, a

;%1+(WQXTMJU+(UQX2Zz—ﬂ(%m“))

22

n {5nm

Tam) *
mot)]’

e el

s£2)°

(43)

term that is proportional to Itit?. This term reflects the de-
pendence of the scaling exponentaand we will therefore
display only this term explicitly.

The first step consists of calculating moments of ¢he
functions:

(1) 2\ _ ; td rdt”(t’ ”
<q m(t) > 2 0 tdt"(t" + 1m) (" + 7o)
T

><<n (t)n<“(t’)>
4

fa-n)

B & t+ 7hm)

2
Tnm

(46)
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) L ) where the leading-order four-point zero mode is
(arm(t)= (——)f dt(aim(t)?
, Z,= 2 (Tom— ) (54)
2_£2 t Thm n<m<,|k<<l
=-— fdt’ 1-———|. @7 "
& Jo (t"+ 7om)?

We also need cross correlations of separation variables with-

(The term proportional ta;®) drops on averaging due to the out a common vertex, whose larg@symptotics are

Ito convention). Thus terms involving only one separation do

. e . 22 In t
not contribute Iogarlthm_lc terms to this order. _ <q<1>qk| )~ ( ( _1)t_2(7n|_ Tl = Tkt Tmid) %
The larget asymptotics of the cross correlation of two g2
separations with one common vertex is (59
c 2 Int/2 and summing over permutations gives
(A (DA (D) ~ Conmit — + —2(—— ) 2
t §2 t“\d 5 @ (2) 2 1)Int( 27,4+22)
1, 2 n<in k< |q i $) \ t? o
J— _— n
X Zz(Tnm+ )t 2 1 (56)
2 5 2 As in the three-point case, we collect the contributions from
X (Tamt 7o~ T {7 = L Tam Egs.(53), (55), and(56), giving
4 11 Int 3 l 4
- 5_2_1 (Tom* a0 (Tom+ Tni— Tm1) (o)~1+ — o8 z 5 Za+ 24+ d —& - 2@'2 23 5224
(57)
. _ 2
+ gz(T”m+ ol ™ Tmi) 48 and the dependence @ implies that
Summing over permutations gives g 1
~ (i=2(2-8- 5 . (58)

E (GEOGP ) ~To+

t in agreement withh5]. Equation(57) yields further informa-
tion by checking the contributions proportional Z; the
2Int/ 2 relative strength of the logarithmic terms is different from
7 t—z(g_z_l) Zs. that obtained in the three-point analysis; see &d). The
We conclude that the only terms i{{w(?) that generate
logarithms are the ones involving cross correlationsqof

reason is thaZ, generates contributions proportional Zg
(49 at first order, so that it is no longer an approximate zero
variables, i.e., the last two in E@42). Of these terms we
need only keep the leading order irt,1giving

mode wherd is finite and the degeneracy between the three-
c 4 (2 2
(@)y=co+ hEgE —(——1) (—+1

2+l
{

point and four-point zero modes breaks down. It is not dif-

ficult to build the four-point zero mod&, that continues
correctly from infinite to finite dimensions as a linear com-
bination ofZ; andZ,,

Int
Ly (50)

t9%\L T\ Z4=Zut 15525 (59)
Combining the contributions from Eq&14) and (50) yields
C. The t—s transformation
8 Z; £ 2 Int . . . ) .
(o)y~1+ — o2 r 1- 2T§+ 1 il (51 The previous analysis relied on calculations as a function

of time and the transformation to a representation as a func-

tion of the total scale was carried out by the simple substi-

tution t—s‘2. The purpose of this subsection is to show that

1 corrections due to a nontrivial dependencesain t do not

§3:2(2_§)+ (4 £)+0 ) (52)  contribute terms of the order that was kept above, i.e.,
d®? O(1/t?) andO(In t/df?).

It should be emphasized that even witkis very large s

which implies, after substituting— s?~¢,

A similar analysis is needed for the calle=4, ns=6. s not a monotonic function of and this is evident even in
The infinite-dimensional limit becomes in this case first-order perturbation theory. However, the size of the time
interval in which one is likely to find the same value ®f
o O~1+ 1 414 (53) becomes very small. In order to estimate the width of this

95 t° interval, supposs(t)=s. We ask for which values of it is
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likely that s(t +7)=s as well. We know that for smalt

— — B
s(t+7)~s+Cr+ —d\/;w, (60)

Jd

wherew is a random variable witld(1) variance an® and
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whose expectation is dd(1/y/dt,) andO(d™*n t,/t). Fi-
nally, it is clear that corrections tg in (o(?)) cannot change
the leading logarithmic behavior. We conclude that to the
order to which the above calculations were carried out it is
safe to take=t,=s’2.

C are some order 1 numbers. The deterministic part is mono- V. CONCLUSIONS AND FURTHER APPLICATIONS

tonic and may be compensated by the fluctuating part to give

a solution only if =0(1/d). This is our estimate for the

width of the multiple solution region. Replacing the earliest

solution fort(s) by some other arbitrary solution thus in-
duces arO(1/d) error int, which is too small to affect the
results to the order that we keep.

In addition, up toO(1/d) we may assume thait) is a
one-to-one mapping and may invert the relation to obtal
t(s). s may be written(up to a constant multiplig¢ras

1

L+ gm0+

1
S~ \ g2 (T 7om) 2

(61)
Inverting to express as a function of gives
2 1
t=to(s>( 1= 9 L T ﬁ% q;%%(to(s»)
+ (higher-order terms (62

whereto=s‘. We see that ta@O(1/y/d), t may indeed be
considered as a single-valued functionspfwhich is, how-

In this paper we have presented a path-oriented approach
to the study of passive scalar advection. The main difference
between this approach and other studies is that we do not
need to consider the whole flo@@nd scalarfield; rather, an
N-point correlation function is described via the evolution of
N Lagrangian trajectories. This allows us to study ordinary

. differential equationgalbeit stochastic ong¢snstead of par-
ial differential operators. The anomalous scaling is due to

relaxation towards an invariant distribution of the instanta-
neous shapes. Since the relaxation rates are associated with
excited states of an evolution operator these scaling expo-
nents are not related to the normal scaling and dimensional
reasoning cannot be applied.

The Lagrangian trajectories become nearly deterministic
in very large dimension@p to random solid body rotations
This property explains why the dynamics simplifies in this
limit and also serves as a starting point for an expansion.
Using perturbation theory, all the ingredients of the present
anomalous scaling picture were demonstrated in an explicit
and concrete manner and perturbative corrections to the
anomalous exponents were calculated.

In addition to the perturbative application, it is possible to
use the same concepts for numerical Monte Carlo simula-

ever, randomly shifted with respect to the zeroth-order eStifions. The main numerical task is to generate the random
mate. We are now going to show that this correction does no&ajectories, which can be done using standard methods.

contribute to the perturbative results either.
We substitutet(s) in the asymptotic expression for®)
[see Eq.(43), keeping the dependence ag,, implicit],

F(Tm) F(Tam) 22
O—1+ — 1+ 1+——
" e g |\ bin ™
2 (1) 3 (1) ’
+ =2 At 5| 2 dm(to)| |- (63

It follows after averaging that corrections tg will contrib-
ute only terms ofO(1/43) andO(In t/dtf).

(aM), which vanishes when one takest, as in Sec.
IV B, is nonzero when corrections tg are taken into ac-
count. The leading nonzero terms are proportional to

1
i

(1)

Tnmqnmz q(l)(t )
tO T kl 0/

(64)

However, in preliminary studies severe problems of conver-
gence prevented us from obtaining precise results and there-
fore the presentation of the numerical application is post-
poned[11,17. It would also be interesting to see how the
other integrable limits of this modek(~0 and é—2) ap-
pear using the present ideas.

ACKNOWLEDGMENTS

We would like to thank Uriel Frisch, Zeev Olami, Itamar
Procaccia, and Massimo Vergassola for discussions. O.G.
thanks Krzystof Gawedzki and Itamar Procaccia, the orga-
nizers of the Turbulence Workshop in IHES, where many of
the ideas in this paper were developed. Most of this work
was done, through the support of the CNR&Z), in the
Laboratoire de Physique Statistique at the Ecole Normale
SuperieurgParig. The Laboratoire de Physique Statistique
is the Laboratoire Assoaieaux UniversitePierre et Marie
Curie, UniversiteDenis Diderot, and CNRS.

[1] U. Frisch, Turbulence (Cambridge University Press, Cam-
bridge, 1995.

[2] R. H. Kraichnan, Phys. Fluidsl, 945 (1968.

[3] R. H. Kraichnan, Phys. Rev. Leff2, 1016(1994.

[4] K. Gawglzki and A. Kupiainen, Phys. Rev. Letf5, 3834
(1995.

[5] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev,
Phys. Rev. B52, 4924(1995.



57 MULTISCALING IN PASSIVE SCALAR ADVECTION AS. .. 5519

[6] O. Gat, V. S. L'vov, and I. Procaccia, Phys. Rev5E 406 [9] B. Derrida and R. Zeitak, Phys. Rev.5, 2513(1996.
(1997. [10] R. H. Kraichnan, V. Yakhot, and S. Chen, Phys. Rev. L#it.

[7] A similar point of view is presented by D. Bernard, K. 240(1996.
Gawedzki, and A. Kupiainen, e-print cond-mat/9706035. [11] O. Gat, I. Procaccia, and R. Zeit@inpublished

[8] See, for example, I. T. Drummond, J. Fluid Med®9, 59 [12] The idea of using paths for passive scalar Monte Carlo simu-
(1982; M. Chertkov, Phys. Rev. B5, 2722 (1997; P. M. lation was developed independently by U. Frisch and M. Ver-
Ginanneschi, e-print chao-dyn/9704017. gassolaunpublishegl



